For over 160 years, Anvil has worked diligently to build a strong, vibrant tradition of making connections — pipe to pipe and people to people.

We pride ourselves in providing the finest quality pipe products and services with integrity and dedication to superior customer service at all levels.

We provide expertise and product solutions for a wide range of applications, from plumbing and mechanical, HVAC, industrial and fire protection to mining, and oil and gas. Our comprehensive line of products includes: grooved pipe couplings, grooved and plain-end fittings, valves, cast and malleable iron fittings, forged steel fittings, steel pipe nipples and couplings, pipe hangers and supports, channel and strut fittings, mining and oil field fittings, along with much more.

As an additional benefit to our customers, Anvil offers a complete and comprehensive Design Services Analysis for mechanical equipment rooms, to help you determine the most effective and cost-efficient piping solutions for your pipe system.

At Anvil, we believe that responsive and accessible customer support is what makes the difference between simply delivering products — and delivering solutions.
TABLE OF CONTENTS

SECTION I
Safety Instructions .. 4
 A) General ... 4
 B) Operator Safety ... 4
 C) Groover Set-Up ... 4
 D) Groover Operation 4
 E) Electrical Safety ... 4

SECTION II
Groover Description (Models 1007 & 3007) 5
 A) Standard Equipment 5
 B) Optional Equipment 5
 C) Grooving Capability 5
 D) Grooving Times ... 5

SECTION III
Groover Set-Up .. 6 - 7
 A) Model 1007 ... 6
 B) Model 3007 ... 7

SECTION IV
Pipe Set-Up and Positioning (Models 1007 & 3007) 8 - 9
 A) Steel Pipe ... 8
 B) CTS Copper System 9

SECTION V
Setting Groove Diameter (Models 1007 and 3007) 10
 A) Steel Pipe and CTS Copper System 10

SECTION VI
Grooving the Pipe or Tube (Models 1007 and 3007) . 11 - 12
 A) Steel Pipe ... 11
 B) CTS Copper System 12

SECTION VII
Grooving Roll Change 13 - 14
 1. Roll Removal ... 13
 A) Guide Roll Mount Plate 13
 B) Top (Groove) Roll 13
 C) Bottom (Drive) Roll 13
 2. Roll Installation 14
 A) Bottom (Drive) Roll 14
 B) Top (Groove) Roll 14
 C) Guide Roll Mount Plate 14

SECTION VIII - Groover Maintenance 15

SECTION IX - Replacement Parts 16 - 19
 A) 1007 & 3007 Groover Head 16
 B) 1007 Base Assembly 17
 C) 3007 Base Assembly 18
 D) 1007 & 3007 Steel & Copper Guide Roll Assemblies ... 19

SECTION X - Groove Specifications 20 - 21
 A) IPS Steel Size Pipe 20
 B) CTS Copper System 21

SECTION XI - Troubleshooting 22
CAUTION - The Gruvlok® Model 1007 and 3007 Roll Groovers are to be used only for roll grooving of pipe. These operating instructions provide important information for the safe operation of the Groovers to protect the operator from possible, serious injury. The Groovers are designed for safe, reliable operation. However, unforeseen circumstances, impossible to predict, could result in an accident. Following the information in these operating instructions will permit safe operation of the Groover.

A. GENERAL
1. Carefully read and understand these operating instructions before assembling and operating the Groover.
2. Read and follow the safety labels on the Groover.
3. Understand the function and the location of all power and grooving controls before using the Groover.

B. OPERATOR SAFETY
1. Do not wear loose clothing, loose sleeve cuffs, loose fitting gloves, or jewelry that could get caught in moving parts.
2. Wear safety glasses and safety shoes.
3. Tie-up or cover long hair.
4. Wear ear protection if using the Groover in a high noise area or for prolonged periods of grooving.
5. Do not operate the Groover if you are tired from fatigue or medication.
6. Do not allow horseplay around the Groover.

C. GROOVER SET-UP
1. Provide a safe work area. Keep the work area well lighted and maintain a clear, uncluttered space for operation of the Groover.
2. Do not use the Groover in wet or damp locations. The floor area around the Groover must be dry and free of slippery materials.
3. Set-up the Groover on firm, level ground. Do not locate the Groover on sloped or irregular ground conditions.
4. Remove all tools, wrenches, etc., from the Groover and power drive base before applying power to the Groover.
5. Do not attempt to lift the Groover by yourself. A hoist is recommended for lifting and moving the Groover.
6. Use the Model 3007 Groover only with a Ridgid® 300 Power Drive with 38 RPM operation.
7. The Model 3007 Groover must be properly mounted on the Ridgid 300 support arms and the Groover driveshaft firmly tightened into the Ridgid 300 chuck jaws.
8. Unplug the Ridgid 300 drive power cord on the Model 3007 Groover or switch the drive power switch to the “Off” position and lockout the switch with a padlock on the Model 1007 Groover prior to servicing or changing groover parts.
9. Tool and Ridgid 300 Power Drive must be mounted to the floor for proper operation.

D. GROOVER OPERATION
1. All safety guards must be in place. Never operate the Groover with the guards removed.
2. Do not operate the Groover without a foot switch. A foot switch is required for safe operation of the Groover.
3. Operate the Groover only from the pump side of the Groover.
4. Keep hands away from guide and grooving rolls. The Groover is designed for “hands clear” grooving.
5. Maintain balanced footing keeping the foot switch within comfortable reach. Do not reach across the Groover or pipe. Keep hands and clothing away from all moving parts.
6. Do not place excessive force on the hydraulic pump handle.
7. Provide proper pipe support with a pipe stand fastened to the floor or ground.
8. Use the Groover only for the size and wall thickness pipe for which it was designed.
9. Do not operate the Groover if any part of the Groover is damaged or broken.
10. Do not attempt to groove pipe shorter than 5” in length.
11. Keep all visitors and bystanders at a safe distance from the Groover, pipe and power cords.

E. ELECTRICAL SAFETY
1. Ground the Ridgid 300 Power Drive (Model 3007) or drive motor (Model 1007). The power drive must be connected to an internally grounded electrical system.
2. The Model 1007 Groover must be connected to the proper power supply that matches the Groover either a 115 volt, 60Hz, single phase power supply with 30 amp capacity.
3. Use 3-wire extension cords only which have 3-prong grounding plugs and 3-pole receptacles which mate with the Groover’s plug.
4. Extension cord conductor size (i.e. American Wire Gage) must be large enough to prevent significant voltage drop which could damage the Groover drive motor or cause loss of power. The chart below shows the recommended extension cord size.

<table>
<thead>
<tr>
<th>Extension Cord Length**</th>
<th>Required Wire Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>25’</td>
<td>12</td>
</tr>
<tr>
<td>50’</td>
<td>12</td>
</tr>
<tr>
<td>100’</td>
<td>10</td>
</tr>
</tbody>
</table>

**Extension cord length greater than 100 Feet is not recommended.
A. **1007 STANDARD EQUIPMENT** – Roll Groover complete with groove and drive rolls for 2” - 12” steel pipe, Steel/CTS Dual Guide Roll Assembly, one and one-half horsepower electric motor drive with foot switch. Two stage hydraulic hand pump, mounting base with footed support legs. Complete set-up and operating instructions; 2” - 6” rolls on tool, 8” - 12” rolls stored in box, and three depth gauges covering the range of 2” through 12” pipe are mounted on the tool. Shipped in closed wood crate that can be used for storage or rental tool return.

Shipping Weight: 620 lbs.

B. **OPTIONAL EQUIPMENT** – (See Section IX for part numbers)

- **Steel Pipe:**
 - 2”-12” Schedule 10, 10S; 40, 40S Rolls: Consisting of 2”-6” and 8”-12” roll sets.
 - 14”-16” Steel Grooving Rolls (Model 1007 only)

- **CTS Copper System:**
 - 2”-8” CTS Copper System Grooving Rolls, 2”-4” CTS Depth Gauge, and 5”-8” CTS Depth Gauge.

- **Other:**
 - Optional 230 volt, 60Hz, 15 amp, single phase electrical panel with motor is available for the 1007 Roll Groover.

C. **GROOVER CAPABILITY**

<table>
<thead>
<tr>
<th>Pipe Material</th>
<th>Pipe Size/Wall Thickness (Schedule)(^1,2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>In.</td>
<td>2</td>
</tr>
<tr>
<td>DN(mm)</td>
<td>50</td>
</tr>
<tr>
<td>Steel</td>
<td>Schedule 10, 40</td>
</tr>
<tr>
<td>Stainless Steel</td>
<td>Schedule 10S, 40S</td>
</tr>
<tr>
<td>Copper</td>
<td>K, L, M & DWV</td>
</tr>
</tbody>
</table>

1. All wall thicknesses shown are the maximum wall thicknesses for the indicated pipe material.

2. Minimum wall thickness for each pipe material and size is:
 - **Steel:** 2” - 12” Schedule 10
 - **Stainless Steel:** 2” - 12” Schedule 10S, 40S
 - **Copper:** 2” - 2\(\frac{1}{2}\)” - Type M, 3” - 8” - Type DWV

D. **Grooving Times** – This chart shows approximate grooving times with the groover set-up for the proper size and groove diameter and the pipe properly positioned on the groover. The times shown are average times from the start of rotation of the pipe in the grooving rolls to completed groove.

<table>
<thead>
<tr>
<th>MODEL 1007/3007 STEEL PIPE GROOVING TIMES (Minutes: Seconds)</th>
<th>Pipe Size (In./DN(mm))/Max Steel Pipe Wall Thickness</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2(\frac{1}{4})</td>
</tr>
<tr>
<td>50</td>
<td>65</td>
</tr>
<tr>
<td>0:20</td>
<td>0:20</td>
</tr>
</tbody>
</table>

“RIDGID” is a registered trade mark of Ridgid Tool of Elyria, Ohio.
SECTION III - GROOVER SET-UP

CAUTION - Removal of the Groover from the shipping box and mounting of the support legs should be accomplished only with the aid of a hoist or other lifting device. To avoid possible injury DO NOT ATTEMPT TO LIFT THE MODEL 1007 ROLL GROOVER MANUALLY.

A. MODEL 1007

1. Install a support leg tube into the receiving socket on the under side of the groover base. Push the tube fully into the receiving socket assuring that the angled cut on the tube bottoms in the receiving socket. Tighten the retaining bolt on the receiving socket. Repeat for the other three legs (5/16" wrench).

2. The Groover should be leveled for best grooving results. Assure level position of the Groover and provide a firm fixed base location for the Groover.

3. Position the pump to the desired orientation for ease of operation. Tighten nut to lock pump in position or if desired, back off just slightly to permit pump to be oriented by operator to most comfortable position during groover operation (5/16" wrench).

4. With a flat screwdriver, open the door to the electrical storage cabinet. Remove the power cord and foot switch from the cabinet mounted on the Groover frame. Plug the power cord into a grounded electrical outlet that matches the Groover. Power requirements: 110 volt, 30 amp or optional 230 volt.

5. Remove the padlocked lockout clip from the power switch. Turn the power switch to the “on” position.

6. Turn the power switch to the “off” position when finished grooving or when moving the groover. Install the lockout clip to the power switch and padlock the lockout clip into position. (1/4" shank padlock).
SECTION III - GROOVER SET-UP

THE GRUVLOK® MODEL 3007 ROLL GROOVER IS DESIGNED FOR USE WITH A RIDGID® 300 POWER DRIVE.

CAUTION

CAUTION - Removal of the Groover from the shipping box and mounting of the Groover to the Ridgid 300 drive should be accomplished by 2 persons. To avoid possible injury DO NOT ATTEMPT TO LIFT THE MODEL 3007 ROLL GROOVER BY ONE PERSON.

B. MODEL 3007

1. Extend the mounting arms of the Ridgid 300 power drive, approximately 12" out from the body of the drive. The Ridgid 300 must be mounted to the floor for continuous operation.

2. Grasp the Groover base on opposite sides, lift the Groover out of the shipping crate and place the mounting slots in the groover base over the extended mounting arms.

3. Align the flats on the triangular shaft tailpiece with the Ridgid 300 chuck jaws and slide the Groover back into the chuck jaws. Securely tighten the chuck jaws. Push extension arms in flush with the Groover mounting base front.

4. Install the larger diameter of the support leg tube into the receiving socket on the under side of the groover base. Push the tube fully into the receiving socket assuring that the angled cut on the tube bottoms in the receiving socket. Tighten the retaining bolt on the groover base. Repeat for the other leg (5/16" wrench).

5. Extend the smaller diameter of the support leg by loosening the lock bolt on the support leg and sliding the smaller diameter tube to its required length. Retighten the lock bolt. (9/16" wrench). The support legs must be mounted to the floor for continuous operation.

6. Loosely attach pump assembly to groover base using the 5/16" nut and bolt provided, then securely connect the coupler located on the end of the hose assembly to it’s mating part on the hydraulic ram.

7. The Groover should be leveled for best grooving results. Place level on top of hydraulic ram as shown and adjust the support legs as required to level the Groover and provide a firm fixed base location for both the Groover and power drive.

8. Position the pump to the desired orientation for ease of operation. Tighten nut to lock pump in position or if desired, back off just slightly to permit pump to be oriented by operator to most comfortable position during groover operation. (1/2" wrench)

“RIDGID” is a registered trade mark of Ridgid Tool of Elyria, Ohio.
SECTION IV - PIPE SET-UP AND POSITIONING (MODELS 1007 & 3007)

The Model 1007 and Model 3007 Groovers come with 2" through 6" IPS pipe size grooving rolls installed unless otherwise requested on your order. To change grooving rolls for other size(s) or for copper tube refer to Section VII for grooving rolls and guide roll plate changeout.

A. STEEL PIPE

1. Set both plastic guide rolls located on the front of the Groover, into the correct holes for the size pipe being grooved (¼" allen wrench).

2. Insert pipe over the bottom roll (groove roll) positioning the pipe flush against the front flange of the bottom roll. Be certain pipe does not override this flange.

3. Using the slot on top of the roller plate adjustment rod, raise (counterclockwise rotation) the guide roll mounting plate sufficiently to ensure that the top grooving roll makes contact with the pipe prior to guide roll contact.

4. Close the release valve on the hydraulic pump by turning the knob clockwise. Pump the hydraulic hand pump to lower the top grooving roll into light firm contact (approx. 100 psi) with the pipe.

5. Make sure the knurled stop (groove diameter stop) is not in contact with the top surface of the groover housing. If contact is noted, release hydraulic pressure by turning the release valve knob counterclockwise allowing the groover head to raise. Turn the knurled stop counterclockwise sufficiently to allow clearance between the bottom of the knurled stop and the top of the groover housing when the top grooving roll is in contact with the pipe.

6. Using the slot on top of the Roller plate adjustment rod, lower the guide rolls into firm contact with the pipe.
 Note: Improper tool adjustment will cause pipe flare and/or the pipe to roll out of the machine.

7. Use one (1) roller pipe stand to support the pipe. Adjust the outboard pipe stand to assure proper contact between the pipe and guide rolls. Pipe stand should be 65% - 75% of the pipe length away from Groover. Looking at the front of the Groover, the pipe stand should be positioned to angle the pipe approximately 0° to ¼° downward, away from the front of the groover and ¼° to the left side at the Groover. See figures below.

![SIDE VIEW DIAGRAM](image1)

![TOP VIEW DIAGRAM](image2)
SECTION IV - PIPE SET-UP AND POSITIONING (MODELS 1007 & 3007)

To groove copper tube using the CTS Copper System, the Steel/CTS Dual Guide Roll Assembly must be used for all sizes of tube. (K, L, M, DWV). DO NOT use the Advanced Copper Method guide roll assembly when using the Copper CTS System. Failure to use the correct guide roll assembly will result in the tubing rolling out of the machine before a correct groove can be made. If the Groover is set-up for steel pipe or Advanced Copper Method, it will also be necessary to change the grooving rolls to the ones required for CTS Copper System. Refer to Section VII for grooving roll and guide roll plate changeout.

B. CTS COPPER SYSTEM

1. Set one plastic guide roll located on the front of the Groover, into the correct hole for the size tube being grooved (1/4" allen wrench). See hole location below.

2. Insert tube over the bottom roll (groove roll) positioning the tube flush against the front flange of the bottom roll. Be certain tube does not override this flange.

3. Using the slot on top of the roller plate adjustment rod, raise (counterclockwise rotation) the guide roll mounting plate sufficiently to ensure that the top grooving roll makes contact with the tube prior to guide roll contact.

4. Close the release valve on the hydraulic pump by turning the knob clockwise. Pump the hydraulic hand pump to lower the top grooving roll into light firm contact (approx. 100 psi) with the tube.

5. Make sure the knurled stop (groove diameter stop) is not in contact with the top surface of the groover housing. If contact is noted, release hydraulic pressure by turning the release valve knob counterclockwise allowing the groover head to raise. Turn the knurled stop counterclockwise sufficiently to allow clearance between the bottom of the knurled stop and the top of the groover housing when the top grooving roll is in contact with the tube.

6. Using the slot on top of the Roller plate adjustment rod, lower the guide rolls into firm contact with the tube.

 Note: Improper tool adjustment will cause tube flare and/or the tube to roll out of the machine.

7. Use one (1) roller pipe stand to support the pipe. Adjust the outboard pipe stand to assure proper contact between the tube and guide rolls. Pipe stand should be 65% - 75% of the pipe length away from Groover. Looking at the front of the Groover, the pipe stand should be positioned to angle the tube approximately 0° to 1/4° downward, away from the front of the groover and 1/4° to the left side at the Groover. See figures below.

 SIDE VIEW DIAGRAM

 TOP VIEW DIAGRAM
SECTION V – SETTING GROOVE DIAMETER (MODELS 1007 & 3007)

STEEL PIPE and CTS COPPER SYSTEM

For proper set-up and positioning of pipe, refer to instructions as shown in Section IV.

1. Increase the pump pressure to the recommended set-up pressure shown in the chart for the size and wall thickness pipe to be grooved.

2. Slide the “C” shaped groove diameter gauge, for the pipe size to be grooved under the adjustable Knurled Stop at top left side of the groover base.

 Each gauge is marked with two (2) size ranges. Place the correct pipe size area, for the size being grooved, under the adjustable knurled nut. When grooving pipe with a diameter of 14”-16”, use the area marked 12”.

 The groove body diameter gauges are mounted on the back of the groover body.

 Note: For CTS Copper System, use the CTS Depth Gauges.

3. Turn the Knurled Stop to snug against the surface of the groove diameter gauge. Release the pump pressure by turning the pump release valve counterclockwise and remove the groove diameter gauge.

STEEL PIPE

RECOMMENDED SET-UP PRESSURE (BOTH MODELS)

<table>
<thead>
<tr>
<th>Pipe Size</th>
<th>Wall</th>
<th>Set-up Pressure</th>
</tr>
</thead>
<tbody>
<tr>
<td>"" - 6"</td>
<td>10</td>
<td>100</td>
</tr>
<tr>
<td>8" - 12"</td>
<td>10</td>
<td>2,000</td>
</tr>
<tr>
<td>14" - 16"</td>
<td>10</td>
<td>2,000</td>
</tr>
<tr>
<td>2"</td>
<td>40</td>
<td>100</td>
</tr>
<tr>
<td>2½" - 4"</td>
<td>40</td>
<td>2,500</td>
</tr>
<tr>
<td>5" - 6"</td>
<td>40</td>
<td>3,600</td>
</tr>
<tr>
<td>8" - 10"</td>
<td>40</td>
<td>4,000</td>
</tr>
<tr>
<td>12"</td>
<td>STD.</td>
<td>4,600</td>
</tr>
<tr>
<td>14" - 16"</td>
<td>STD.</td>
<td>4,600</td>
</tr>
</tbody>
</table>

CTS COPPER SYSTEM

RECOMMENDED SET-UP PRESSURE (BOTH MODELS)

<table>
<thead>
<tr>
<th>Tube Size</th>
<th>Wall</th>
<th>Set-up Pressure</th>
</tr>
</thead>
<tbody>
<tr>
<td>2" - 4"</td>
<td>K, L, M, DWV</td>
<td>100</td>
</tr>
<tr>
<td>5" - 6"</td>
<td>K, L, M, DWV</td>
<td>200</td>
</tr>
<tr>
<td>8"</td>
<td>K, L, M, DWV</td>
<td>400</td>
</tr>
</tbody>
</table>

“RIDGID” is a registered trade mark of Ridgid Tool of Elyria, Ohio.
A. STEEL PIPE

1. Recheck for correct pipe set-up and position on the bottom roll and adjust as required. Close the relief valve on the hydraulic hand pump and increase pump pressure to 400 psi. (200 psi for Sch. 10)

MODEL 3007 ONLY – Extremely Important

Check to see that the Ridgid* 300 drive directional switch is set to “reverse” position (clockwise rotation of the pipe looking at the front of Groover.)
Pipe must be square on ends.
Burr or torch slag must be removed. Any pipe manufacturing seam, on inside or outside of pipe, must be removed.

2. Start the drive motor by depressing the foot switch to rotate the pipe. Assure that the pipe is tracking firmly against the back of the bottom roll.

3. With the pipe rotating, increase grooving force by slowly pumping the hydraulic pump handle to raise pump pressure. Do not pump too fast. Using the pressure gauge mounted on the hydraulic ram maintain approximately the listed grooving pressures for size and wall thickness of pipe to efficiently form the groove.

4. Maintain grooving force until the Knurled Stop (groove diameter stop) comes into full, firm contact with the top of the groover base head. Allow the pipe to rotate 1 to 2 revolutions assuring completion of the groove. Release the foot switch to allow the pipe to stop rotation.

5. Open the hydraulic hand pump release valve by turning counterclockwise. Remove the pipe from the Groover. Check the groove diameter. If required, adjust the groove diameter stop to assure grooves to be within Gruvlok groove specification limits. (Grooving Specifications are shown in Section X of these instructions.)

Note: Adjustment of the Knurled Stop (groove diameter stop) will produce the below listed groove diameter changes.

<table>
<thead>
<tr>
<th>Knurled Stop** Adjustment</th>
<th>Groove Diameter Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turns</td>
<td>Inches</td>
</tr>
<tr>
<td>1/8</td>
<td>.008”</td>
</tr>
<tr>
<td>1/4</td>
<td>.016”</td>
</tr>
<tr>
<td>3/8</td>
<td>.024”</td>
</tr>
<tr>
<td>1/2</td>
<td>.032”</td>
</tr>
<tr>
<td>3/4</td>
<td>.047”</td>
</tr>
<tr>
<td>1</td>
<td>.062”</td>
</tr>
<tr>
<td>1 1/2</td>
<td>.094”</td>
</tr>
<tr>
<td>2</td>
<td>.125”</td>
</tr>
</tbody>
</table>

Knurled Stop Rotation:
Clockwise rotation – Increase groove diameter
Counterclockwise rotation – Decrease groove diameter

6. After adjustment of the Knurled Stop, if the groove diameter is large (i.e. shallow groove depth), place the pipe end back into the Groover and complete the same groove to the new diameter stop setting. If the groove diameter is small (i.e. deep groove depth), put an unfinished end into the Groover and complete the groove.
Recheck the groove diameter for conformance to grooving specifications.

Note: *"RIDGID" is a registered trade mark of Ridgid Tool of Elyria, Ohio.
SECTION VI – GROOVING THE PIPE OR TUBE (MODELS 1007 & 3007)

B. COPPER TUBE: CTS COPPER SYSTEM

1. Recheck for correct tube set-up and position on the bottom roll and adjust as required. Close the relief valve on the hydraulic hand pump and increase pump pressure to 100 psi.

MODEL 3007 ONLY – Extremely Important

Check to see that the Ridgid* 300 drive directional switch is set to "reverse" position (clockwise rotation of the tube looking at the front of Groover.)

Tube must be square on ends.

Burrs must be removed. Any tube manufacturing seam, on inside or outside of tube, must be removed.

2. Start the drive motor by depressing the foot switch to rotate the tube. Assure that the tube is tracking firmly against the back of the bottom roll.

3. With the tube rotating, increase grooving force by slowly pumping the hydraulic pump handle to raise pump pressure. Do not pump too fast.

Using the pressure gauge mounted on the hydraulic ram maintain approximately the listed grooving pressures for size and type of tube listed below to efficiently form the groove.

4. Maintain grooving force until the Knurled Stop (groove diameter stop) comes into full, firm contact with the top of the groover base head. Allow the tube to rotate 1 to 2 revolutions assuring completion of the groove.

Release the foot switch to allow the tube to stop rotation.

5. Open the hydraulic hand pump release valve by turning counterclockwise. Remove the tube from the Groover.

Check the groove diameter. If required, adjust the groove diameter stop to assure grooves to be within Gruvlok groove specification limits. (Grooving Specifications are shown in Section X of these instructions.)

Note: Adjustment of the Knurled Stop (groove diameter stop) will produce the below listed groove diameter changes.

<table>
<thead>
<tr>
<th>Knurled Stop** Adjustment</th>
<th>Groove Diameter Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turns</td>
<td>Inches</td>
</tr>
<tr>
<td>1/8</td>
<td>.008"</td>
</tr>
<tr>
<td>1/4</td>
<td>.016"</td>
</tr>
<tr>
<td>3/8</td>
<td>.024"</td>
</tr>
<tr>
<td>1/2</td>
<td>.032"</td>
</tr>
<tr>
<td>5/8</td>
<td>.047"</td>
</tr>
<tr>
<td>1</td>
<td>.062"</td>
</tr>
<tr>
<td>1 1/2</td>
<td>.094"</td>
</tr>
<tr>
<td>2</td>
<td>.125"</td>
</tr>
</tbody>
</table>

**Knurled Stop Rotation:
Clockwise rotation – Increase groove diameter
Counterclockwise rotation – Decrease groove diameter

6. After adjustment of the Knurled Stop, if the groove diameter is large (i.e. shallow groove depth), place the tube end back into the Groover and complete the same groove to the new diameter stop setting. If the groove diameter is small (i.e. deep groove depth), put an unfinished end into the Groover and complete the groove.

Recheck the groove diameter for conformance to grooving specifications.
SECTION VII – GROOVING ROLL CHANGE (MODELS 1007 & 3007)

1. ROLL REMOVAL

Note: With 2” – 6” grooving rolls installed – remove the bottom roll first, then remove the top roll. With 8” – 12” and 14” – 16” grooving rolls installed – remove the top roll first, then remove the bottom roll.

A. GUIDE ROLL MOUNTING PLATE

1. Using a large slotted screwdriver and a 3/4” wrench, loosen the hex nut located on the top of the adjustment shaft protruding from the top of the groover head.

Tools Required

| (1) Large Slotted Screwdriver |
| (1) 3/4” Wrench |
| (1) 3/16” Allen Wrench |

2. Place one hand under the guide roll mounting plate and remove the hex nut from the adjustment shaft.

Remove the guide roll mounting plate by lowering until fully disengaged.

B. TOP (GROOVE) ROLL

1. Remove the quick release pin by grasping the ring located on the end of the pin and pulling straight up.

2. Screw the 1/4” - 20 thumb screw (same one that is used to secure the depth gauges to the main housing) into the tapped hole in the top shaft.

C. BOTTOM (DRIVE) ROLL

1. Loosen and remove the socket cap screw to remove the hinged collar from around the bottom roll shaft at the back of the groover base (3/16” allen wrench).

MODEL 3007 ONLY

1. Release the Ridgid* 300 chuck jaws from around the tailpiece on the bottom roll.

2. Pull the bottom roll shaft out the front of the Groover.

“RIDGID” is a registered trade mark of Ridgid Tool of Elyria, Ohio.

1007/3007 RGM-7.09 13
SECTION VII – GROOVING ROLL CHANGE (MODELS 1007 & 3007)

2. **ROLL INSTALLATION**

Note: With 2” – 6” grooving rolls – Install the top roll first, then install the bottom roll.
With 8” – 12” and 14” – 16” grooving rolls – Install the bottom roll first, then install the top roll.

A. TOP (GROOVE) ROLL

1. Thoroughly clean and inspect top shaft to ensure that it is free from all burrs and galling.

2. Position roller between the front and back plates of the grooving head aligning the rollers bushings to receive the top shaft as it is inserted from the front of the machine.

3. Push the shaft inward, through the top rollers bushings, stopping when the back of the shaft is flush with the back of the grooving head.

4. Rotate the top shaft to align the cross drilled hole with the corresponding hole in the groover head. Remove thumb screw from top shaft and return it to its proper storage position.

5. Insert the quick release pin. When properly installed, the spring loaded locking ball on the bottom portion of the pin will extend below the bottom of the top shaft.

Note: Top rollers for the Advanced Copper Method utilize a spherical bearing that the top shaft passes through. This bearing must be aligned such that the top shaft hole is perpendicular to the face of the roll prior to pin installation. **DO NOT FORCE TOP SHAFT.** When properly aligned, the top shaft will slide in with little effort.

B. BOTTOM (DRIVE) ROLL

1A. Insert the bottom roll shaft through the front of the groover base exposing the triangular shaped tailpiece at the back of the Groover.

1B. Lubricate shaft for ease of installation.

2. **MODEL 1007 ONLY**
Align the flats on the triangular shaft with the motor drive coupling and insert the shaft into the coupling.
Note: Push the shaft in from the front to fully expose the collar receiving slot at the back end of the Groover.

3. Insert the hinged collar into the shaft slot and tighten the socket cap screw (3/16” allen wrench).

4. **MODEL 3007 ONLY**
Align the flats on the triangular shaft with the Ridgid 300* chuck jaws. Slide the Groover back on the mounting arms to insert the triangular shaft tailpiece into the chuck jaws. Securely tighten the Ridgid 300 chuck jaws.

C. GUIDE ROLL MOUNTING PLATE

Note: Select the correct mounting plate for either steel pipe, Advanced Copper Method, or CTS Copper System.

1. Insert the adjustment shaft from the bottom, into the hole in the mounting block at the front of the groover head. Slide the shaft up to expose threaded portion above the top of the mounting block and install the hex nut.

2. Using a large slotted screwdriver and a 3/4” wrench, lightly snug the hex nut in place.

“RIDGID” is a registered trade mark of Ridgid Tool of Elyria, Ohio.
Due to the use of sealed bearings, the 1007 and 3007 Roll Groovers require very little maintenance.

A. GENERAL
 1. Periodically unplug and thoroughly clean your Roll Groover.

 2. A protective film of light oil should be applied to all rollers and guide roll mounting plates. Frequency of application will vary due to environmental conditions but shall be sufficient to prevent the formation of surface rust.

B. REPLACEMENT PARTS
 Please contact your local Gruvlok branch to purchase replacement parts and accessories for the Roll Groover. To facilitate ordering, an exploded drawing of each machine along with replacement parts listings are presented in the next section.

C. HYDRAULIC MAINTENANCE
 If you are having problems achieving or maintaining hydraulic pressure, the following user serviceable items should be checked:

 1. Verify that the release valve knob on the pump is not hitting the pump housing prior to the valve closing completely. There should be a slight gap between the stop located on the knob and the pump body. If there is not, loosen the two set screws using a 1/8" allen wrench and reposition knob accordingly.

 2. Check hydraulic fluid level. Fully retract hydraulic ram piston by turning pump release valve counterclockwise. Remove filler cap from the rear of the reservoir body. The fluid level should come to the bottom edge of the filler hole when the pump is level and resting horizontally on its base. Mobil DTE 24 hydraulic oil or its ISO 32 equivalent should be used.

 3. Bleeding air from the system is necessary. Air can accumulate in the system through prolonged use as well as repeatedly making up the quick connect coupling to the hydraulic ram.

 Bleeding procedure is as follows:
 • Disconnect quick connect coupling and remove hydraulic ram from the top of the Roll Groover.
 • Reconnect hydraulic ram to pump and allow hose and ram to hang down.
 • Close release valve on pump and pump to fully extend hydraulic ram. Tilt pump to the right (hose side) to eliminate high point in hose and open release valve allowing the hydraulic ram to return to above its fully retracted position. Repeat the above procedure fully extending and retracting the hydraulic ram several times, thereby releasing the trapped air into the pump reservoir.
 • Recheck fluid level and add as required.
SECTION IX - REPLACEMENT PARTS

A. 1007 & 3007 GROOVER HEAD

<table>
<thead>
<tr>
<th>ID No.</th>
<th>Part Name</th>
<th>Part No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Quick Release Pin</td>
<td>GL11775</td>
</tr>
<tr>
<td>2</td>
<td>Hydraulic Ram Assembly</td>
<td>GL11095</td>
</tr>
<tr>
<td>3</td>
<td>Knurled Stop Assembly</td>
<td>GL11035</td>
</tr>
<tr>
<td>4</td>
<td>Spring</td>
<td>GL11065</td>
</tr>
<tr>
<td>5</td>
<td>Thumb Screw</td>
<td>GL11056</td>
</tr>
<tr>
<td>6</td>
<td>Hinged Shaft Collar</td>
<td>GL11194</td>
</tr>
<tr>
<td>7</td>
<td>Cap Screw, ¼"-20, L=½"</td>
<td>GL11767</td>
</tr>
<tr>
<td>8</td>
<td>Safety Mesh</td>
<td>GL11313</td>
</tr>
<tr>
<td>9</td>
<td>Stop Plate Assembly</td>
<td>GL11467</td>
</tr>
<tr>
<td>10</td>
<td>Top Shaft</td>
<td>GL11039</td>
</tr>
<tr>
<td>11</td>
<td>Bottom Roller:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2"-6' Steel</td>
<td>GL11114</td>
</tr>
<tr>
<td></td>
<td>8"-12' Steel</td>
<td>GL11119</td>
</tr>
<tr>
<td></td>
<td>14"-16' Steel (optional)</td>
<td>GL11337</td>
</tr>
<tr>
<td></td>
<td>2"-8' CTS Copper System (optional)</td>
<td>GL13801</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ID No.</th>
<th>Part Name</th>
<th>Part No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>Top Roller:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2"-6' Steel</td>
<td>GL11110</td>
</tr>
<tr>
<td></td>
<td>8"-12' Steel</td>
<td>GL11117</td>
</tr>
<tr>
<td></td>
<td>14"-16' Steel (optional)</td>
<td>GL11335</td>
</tr>
<tr>
<td></td>
<td>2"-8' CTS Copper System (optional)</td>
<td>GL13799</td>
</tr>
<tr>
<td>13</td>
<td>Depth Gauge:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1"-3' Steel</td>
<td>GL11115</td>
</tr>
<tr>
<td></td>
<td>4"-6' Steel</td>
<td>GL11116</td>
</tr>
<tr>
<td></td>
<td>8"-12' Steel</td>
<td>GL11120</td>
</tr>
<tr>
<td></td>
<td>2"-4' CTS Copper System (optional)</td>
<td>GL13850</td>
</tr>
<tr>
<td></td>
<td>5"-8' CTS Copper System (optional)</td>
<td>GL13851</td>
</tr>
</tbody>
</table>
ID No. | Part Name | Part No. | ID No. | Part Name | Part No.
--- | --- | --- | --- | --- | ---
1 | Pump Assembly | GL11081 | 6 | Electronic Control Panel | GL11168
2 | Hex Bolt, \(\frac{3}{8}^\#\)-11, L=1\(\frac{1}{2}\)^* | GL11091 | 7 | Hex Bolt, \(\frac{3}{8}^\#\)-18, L=\(\frac{1}{2}\)^* | GL11217
3 | Hex Nut, \(\frac{3}{8}^\#\)-11 | GL11313 | 8 | Motor & Gear Reducer | GL11164
4 | Leg Weldment | GL11161 | 9 | Bolt, \(\frac{3}{8}^\#\)-13, L=2\(\frac{1}{2}\)^* | GL11174
5 | Hex Bolt, \(\frac{3}{8}^\#\)-16, L=1" | GL11150 | 10 | Lockwasher, \(\frac{3}{8}^\#\) ID | GL11197
1A | Hydraulic Pump | GL11082 | 11 | Hex Nut, \(\frac{3}{8}^\#\)-13 | GL11198
1B | Pump Plate | GL11090 | 12 | Shaft Safety Cover | GL11200
1C | Cap Screw, \(\frac{1}{4}^\#\)-20, L=\(\frac{1}{2}\)" | GL11230 | 13 | Gearbox Key | GL11175
1D | Cap Screw, \(\frac{1}{4}^\#\)-20, L=\(\frac{3}{8}\)" | GL11093 | 14 | Flexible Coupling Body | STD-0048
1E | Hydraulic Pressure Gauge | GL11084 | 15 | Spider | GL11173
17 | Shaft Coupling Assembly | GL11195 | 16 | Lockwasher, \(\frac{3}{8}^\#\) ID | GL11076
18 | Hex Bolt \(\frac{3}{8}^\#\)-16, L=1\(\frac{1}{4}\)^* | GL11074

Pump Assembly Consists of the Following:

- **1A** Hydraulic Pump
- **1B** Pump Plate
- **1C** Cap Screw, \(\frac{1}{4}^\#\)-20, L=\(\frac{1}{2}\)"
- **1D** Cap Screw, \(\frac{1}{4}^\#\)-20, L=\(\frac{3}{8}\)"
- **1E** Hydraulic Pressure Gauge
- **2** Hex Bolt, \(\frac{3}{8}^\#\)-11, L=1\(\frac{1}{2}\)^*
- **3** Hex Nut, \(\frac{3}{8}^\#\)-11
- **4** Leg Weldment
- **5** Hex Bolt, \(\frac{3}{8}^\#\)-16, L=1"

* Denotes inch measurement.
SECTION IX - REPLACEMENT PARTS

C. 3007 BASE ASSEMBLY

<table>
<thead>
<tr>
<th>ID No.</th>
<th>Part Name</th>
<th>Part No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Pump Assembly</td>
<td>GL11081</td>
</tr>
<tr>
<td>1A</td>
<td>Hydraulic Pump</td>
<td>GL11082</td>
</tr>
<tr>
<td>1B</td>
<td>Pump Plate</td>
<td>GL11090</td>
</tr>
<tr>
<td>1C</td>
<td>Cap Screw, 1/4"-20, L=1/2"</td>
<td>GL11230</td>
</tr>
<tr>
<td>1D</td>
<td>Cap Screw, 1/4"-20, L=5/8"</td>
<td>GL11093</td>
</tr>
<tr>
<td>1E</td>
<td>Hydraulic Pressure Gauge</td>
<td>GL11084</td>
</tr>
<tr>
<td>2</td>
<td>Hex Bolt, 5/8"-11, L=1 1/2"</td>
<td>GL11091</td>
</tr>
<tr>
<td>3</td>
<td>Hex Nut, 5/8"-11</td>
<td>GL11092</td>
</tr>
<tr>
<td>4</td>
<td>Lockwasher, 3/8" ID</td>
<td>GL11076</td>
</tr>
<tr>
<td>5</td>
<td>Bolt, 3/8"-16, L=1 1/4"</td>
<td>GL11074</td>
</tr>
<tr>
<td>6</td>
<td>Upper Leg Weldment</td>
<td>GL11145</td>
</tr>
<tr>
<td>7</td>
<td>Foot-Leg Sub-Assembly</td>
<td>GL11147</td>
</tr>
<tr>
<td>8</td>
<td>Hex Bolt, 3/8"-16, L=1"</td>
<td>GL11150</td>
</tr>
</tbody>
</table>

Pump Assembly Consists of the Following:

- **ID No.** 1
- **Part Name** - Pump Assembly
- **Part No.** GL11081

- **ID No.** 1A
- **Part Name** - Hydraulic Pump
- **Part No.** GL11082

- **ID No.** 1B
- **Part Name** - Pump Plate
- **Part No.** GL11090

- **ID No.** 1C
- **Part Name** - Cap Screw, 1/4"-20, L=1/2"
- **Part No.** GL11230

- **ID No.** 1D
- **Part Name** - Cap Screw, 1/4"-20, L=5/8"
- **Part No.** GL11093

- **ID No.** 1E
- **Part Name** - Hydraulic Pressure Gauge
- **Part No.** GL11084
SECTION IX - REPLACEMENT PARTS

D. 1007 & 3007 STEEL AND COPPER GUIDE ROLL ASSEMBLIES

STEEL/CTS DUAL GUIDE ROLL ASSEMBLY

<table>
<thead>
<tr>
<th>ID No.</th>
<th>Part Name</th>
<th>Part No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2"-12" Steel/CTS Dual Guide Roll Assembly</td>
<td>GL11100</td>
</tr>
</tbody>
</table>

Steel Guide Roll Assembly Consists of the Following:

1A Guide Roll ...GL11106
1B Washer, 1/2" ...GL11109
1C Shoulder Bolt, 1/2" ..GL11107
1D Guide Roll Guard..GL11304
1E Cap Screw, 1/4"-20, L=1/2" ...GL11230
1F Flat Head Screw, 1/4"-20, L=3/4"GL11108
1G Hex Nut, 1/2" ...GL11198

Options:

14"-16" Steel Guide Roll Assembly ..GL11333
Gruvlok® Roll Groove Specifications for Steel & Other IPS Size Pipe

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2</td>
<td>2.375</td>
<td>+0.024</td>
<td>-0.024</td>
<td>0.625</td>
<td>2.250</td>
<td>0.063</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>60.3</td>
<td>+0.61</td>
<td>-0.61</td>
<td>15.88</td>
<td>8.74</td>
<td>0.065</td>
</tr>
<tr>
<td></td>
<td>2½</td>
<td>2.875</td>
<td>+0.029</td>
<td>-0.029</td>
<td>0.625</td>
<td>2.720</td>
<td>0.078</td>
</tr>
<tr>
<td></td>
<td>65</td>
<td>73.0</td>
<td>+0.74</td>
<td>-0.74</td>
<td>15.88</td>
<td>8.74</td>
<td>0.083</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>3.500</td>
<td>+0.035</td>
<td>-0.031</td>
<td>0.625</td>
<td>3.344</td>
<td>0.083</td>
</tr>
<tr>
<td></td>
<td>80</td>
<td>88.9</td>
<td>+0.89</td>
<td>-0.79</td>
<td>15.88</td>
<td>8.74</td>
<td>0.083</td>
</tr>
<tr>
<td></td>
<td>3½</td>
<td>4.000</td>
<td>+0.040</td>
<td>-0.031</td>
<td>0.625</td>
<td>4.334</td>
<td>0.083</td>
</tr>
<tr>
<td></td>
<td>90</td>
<td>101.6</td>
<td>+1.02</td>
<td>-0.79</td>
<td>15.88</td>
<td>8.74</td>
<td>0.083</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>4.500</td>
<td>+0.045</td>
<td>-0.031</td>
<td>0.625</td>
<td>4.334</td>
<td>0.083</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>114.3</td>
<td>+1.14</td>
<td>-0.79</td>
<td>15.88</td>
<td>8.74</td>
<td>0.083</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>5.563</td>
<td>+0.056</td>
<td>-0.031</td>
<td>0.625</td>
<td>5.395</td>
<td>0.084</td>
</tr>
<tr>
<td></td>
<td>125</td>
<td>141.3</td>
<td>+1.42</td>
<td>-0.79</td>
<td>15.88</td>
<td>8.74</td>
<td>0.109</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>6.625</td>
<td>+0.063</td>
<td>-0.031</td>
<td>0.625</td>
<td>6.455</td>
<td>0.085</td>
</tr>
<tr>
<td></td>
<td>150</td>
<td>168.3</td>
<td>+1.60</td>
<td>-0.79</td>
<td>15.88</td>
<td>8.74</td>
<td>0.109</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>8.625</td>
<td>+0.063</td>
<td>-0.031</td>
<td>0.750</td>
<td>8.441</td>
<td>0.092</td>
</tr>
<tr>
<td></td>
<td>200</td>
<td>219.1</td>
<td>+1.60</td>
<td>-0.79</td>
<td>15.05</td>
<td>10.95</td>
<td>0.134</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>10.750</td>
<td>+0.063</td>
<td>-0.031</td>
<td>0.750</td>
<td>10.562</td>
<td>0.109</td>
</tr>
<tr>
<td></td>
<td>250</td>
<td>273.1</td>
<td>+1.60</td>
<td>-0.79</td>
<td>15.05</td>
<td>10.95</td>
<td>0.134</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>12.750</td>
<td>+0.063</td>
<td>-0.031</td>
<td>0.750</td>
<td>12.531</td>
<td>0.109</td>
</tr>
<tr>
<td></td>
<td>300</td>
<td>323.9</td>
<td>+1.60</td>
<td>-0.79</td>
<td>15.05</td>
<td>12.531</td>
<td>0.156</td>
</tr>
</tbody>
</table>

Out of roundness: Difference between maximum O.D. and minimum O.D. measured at 90° must not exceed total O.D. tolerance listed (reference column 2).

For IPS pipe, the maximum allowable tolerance from square cut ends is 0.03” for 2” thru 3½”; 0.045” for 4” thru 6”; and 0.060” for sizes 8” and above measured from a true square line.

Beveled-End Pipe in conformance with ANSI B16.25 (37½°) is acceptable, however square cut is preferred.
SECTION X – GROOVE SPECIFICATIONS

GRUVLOK® CTS COPPER SYSTEM GROOVE SPECIFICATIONS

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Actual</td>
<td>Tolerance</td>
<td>+/– 0.03 in.</td>
<td>+/– 0.000 in.</td>
<td>+/– 0.76mm</td>
<td>+/– 0.000in.</td>
<td>+/– 0.03 In.</td>
</tr>
<tr>
<td>2</td>
<td>2.125</td>
<td>0.002</td>
<td>0.002</td>
<td>76</td>
<td>610</td>
<td>2.029</td>
<td>-0.020</td>
</tr>
<tr>
<td>3</td>
<td>3.125</td>
<td>0.002</td>
<td>0.002</td>
<td>76</td>
<td>610</td>
<td>2.029</td>
<td>-0.020</td>
</tr>
<tr>
<td>4</td>
<td>4.125</td>
<td>0.002</td>
<td>0.002</td>
<td>76</td>
<td>610</td>
<td>2.029</td>
<td>-0.020</td>
</tr>
<tr>
<td>5</td>
<td>5.125</td>
<td>0.002</td>
<td>0.002</td>
<td>76</td>
<td>610</td>
<td>2.029</td>
<td>-0.020</td>
</tr>
<tr>
<td>6</td>
<td>6.125</td>
<td>0.002</td>
<td>0.002</td>
<td>76</td>
<td>610</td>
<td>2.029</td>
<td>-0.020</td>
</tr>
<tr>
<td>8</td>
<td>8.125</td>
<td>0.002</td>
<td>0.004</td>
<td>76</td>
<td>610</td>
<td>2.029</td>
<td>-0.020</td>
</tr>
</tbody>
</table>

COLUMNS 1 - Nominal tubing size ASTM B88
COLUMNS 2 - Outside diameter of copper tubing per ASTM B88. Allowable tolerance from square cut ends is +0.03”/-0.004” for sizes 2”-3”; +0.045”/-0.14mm for sizes 4”-8”
COLUMNS 3 - Gasket seat must be free from scores, roll marks, indentations, grease and dirt which may interfere with gasket sealing.
COLUMNS 4 - Groove width is to be free from chips, dirt, etc. which may interfere with proper coupling assembly.
COLUMNS 5 - Groove diameter must be of uniform depth for the entire circumference of the tubing. (See column 6).
COLUMNS 6 - Groove depth is for reference only; the groove diameter must conform to column 5.
COLUMNS 7 - DWV (Drain, Waste and Vent Piping) per ASTM B306.
COLUMNS 8 - Maximum flare diameter is the OD at the most extreme tubing diameter.
<table>
<thead>
<tr>
<th>Troubleshooting Instructions</th>
<th>Possible Cause</th>
<th>Solution</th>
</tr>
</thead>
</table>
| 1. Pipe will not stay in grooving rolls | Incorrect pipe positioning.
Improper grooving technique.
Power drive running counterclockwise
Model 3007. | See "Pipe Set-up & Positioning'
See "Grooving Pipe"
Ridgid 300 check setting in reverse
Clockwise rotation of pipe |
| 2. Pipe stops rotating during grooving. | Rust or dirt has built up on lower roll.
Worn grooving rolls.
Ridgid 300 chuck jaws not engaged properly.
Steel Pipe – Groove Diameter Stop improperly adjusted.
Copper Tube – Groove Diameter Stop making contact with top surface of Groover. | Remove accumulation from lower roll with stiff wire brush.
Inspect lower rolls for worn knurls, replace if worn.
See ‘Groover Set-up’
Adjust Groove Diameter Stop to correct IPS.
Verify Groove Diameter Stop Nuts are fully backed off. |
| 3. Pipe flare excessive | Pipe stand adjusted too high.
Tool is tilted forward.
Incorrect pipe stand offset positioning. Pipe is over "tracking".
Warped bottom roll shaft. | See "Pipe Set-up & Positioning"
See "Groover Set-up"
See "Pipe Set-up & Positioning"
Replace damaged bottom roll shaft.
The hinged collar may be missing.
Replace damaged parts. |
| 4. While grooving loud squeaks echo through the pipe or tube. | Pipe or Tube not square cut.
Incorrect pipe roller offset positioning. Pipe is over "tracking". | Cut pipe or tube ends squarely.
Move pipe stand for proper offset. See ‘Pipe Set-up & Positioning’ |
| 5. During grooving loud thumps or bangs occur about once every revolution of the pipe. | Pipe has a pronounced weld seam. | Grind welds flush with pipe surface inside & out 2" back from pipe end. |
| 6. Tool won't groove pipe. | Hand pump is low on oil.
Air in hydraulic system.
Pipe wall thickness exceeds tool's capability. | See ‘Groover Maintenance’
See ‘Groover Maintenance’
See ‘Groover Description’ |
Brands of Anvil International

Anvil® product lines include malleable and cast iron fittings, unions and flanges; seamless and welded steel pipe nipples; steel pipe couplings; universal anvlets; forged steel fittings and unions; pipe hangers and supports; threaded rod; and engineered hangers.

The Grudlok® product line consists of couplings for grooved and plain-end fittings, butterfly valves and check valves; flanges; pump protection components; pipe grooving tools; as well as copper and stainless steel system components.

Anvil-Strut™ products include a complete line of channel in stock lengths of 10 and 20 feet, with custom lengths available upon request. A variety of fittings and accessories are also offered. All products can be ordered in an assortment of finishes and material choices including SuprGreen™, Zinc Trivalent Chromium, pre-galvanized, hot-dipped galvanized, electro-galvanized, aluminum, plain, and stainless steel.

The Merit® product line includes a variety of tee-lets and drop nipples for fire protection applications. Most Merit products are UL/ULC Listed, FM Approved, and rated from 175 to 300 psi.

Catawissa™ NACE and API approved wing unions for Standard Service are offered in non-pressure seal ends as well as threaded and butt weld, and are interchangeable with most leading union manufacturers. Fully traceable and available with complete mill certifications, Catawissa’s oilfield wing union product line includes the standard ball-and-cone design plus our unique Figure 300 Flat Face design, where space and pipe line separation are a consideration.

Canvil® manufactures low pressure hexagon reducer bushings, as well as plugs and hex caps up to 1” in diameter in various finishes including Oil Treat, Phosphate and Electro Galvanized. In addition, Canvil manufactures A105 hex or round material in class 3000 and 6000 pound, forged steel couplings and bar stock products offered as either as normalized (A105N) or non-normalized (A105) that are fully traceable for mechanicals and chemistry through our MTR program.

Steel pipe nipples and steel pipe couplings are manufactured in accordance with the ASTM A733 Standard Specification for Welded and Seamless Carbon Steel and Stainless Steel Pipe Nipples. Steel pipe couplings are manufactured in accordance with the ASTM A865 Standard Specification for Threaded Couplings, Steel, Black or Zinc-Coated (Galvanized) Welded or Seamless, for Use in Steel Pipe Joints. API couplings are manufactured in accordance with the API Specification for line pipe.

Anvil EPS-Engineered Pipe Supports are products used to support piping systems under thermal, seismic, and other dynamic loading conditions. The product line encompasses variable spring hangers, constant supports, sway struts and snubbers as well as standard and special design clamps. Anvil EPS brings the highest quality products and innovative engineering solutions to common and uncommon piping system problems.
CORPORATE OFFICES
2 Holland Way
Exeter, NH 03833
Tel: 603-418-2800
Fax: 603-418-2833
E-mail: sales@anvilintl.com

U.S. REGIONAL SERVICE CENTERS
Northern Region
Regional Distribution & Customer Service Center
7979 W. 183rd Street, Tinley Park, IL 60477
Tel: 708-885-3000
Fax: 708-534-5441
Toll Free: 1-800-301-2701

Southern Region
Regional Distribution & Customer Service Center
1401 Valley View Lane, Suite 150, Irving, TX 75061
Tel: 972-871-1206
Fax: 972-641-8946
Toll Free: 1-800-451-4414

CANADA SERVICE CENTER
Anvil International Canada
Customer Service Center
390 Second Avenue, P.O. Box 40, Simcoe, Ontario N3Y 4K9
Tel: 519-426-4551
Fax: 519-426-5509

INTERNATIONAL SALES
Europe and Middle East Region
Rick van Meesen
rvanmeesen@anvilintl.com
Tel: +31-53-5725570
Fax: +31-53-5725579

Mexico, Puerto Rico and Latin America Region
International Customer Service
Tel: +1-708-885-3000
Fax: +1-708-534-5441